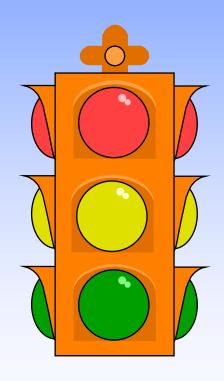

WELCOME

ATC 2070 & ITS CABINET WORKSHOP SPONSORED BY CALTRANS



ATC 2070 WORKSHOP

MARTHA STYER - OFFICE CHIEF, ITS DEVELOPMENT AND SUPPORT TRAFFIC OPERATIONS CALTRANS H.Q., SACRAMENTO

CALTRANS' ROLE ATC - ITS WORLD

- WHERE WE ARE NOW
 - ITS STATUS
 - ACCOUNTABILITY
- WHERE WE ARE GOING
 - CALTRANS "GRAND" MASTER PLAN
 - USE OF CONSULTANTS
 - PROJECT MANAGER ROLE
 - GENERAL BLUEPRINT

WORKSHOP AGENDA

INTRODUCTION ATC MODEL 2070 CONTROLLER UNIT MODEL 2070 APPLICATION PROGRAMS ITS CABINET FAMILY TRAINING ASSESSMENT

FLOYD WORKMON

SESSION 1 - MODEL 2070

ADVANCED TRANSPORTATION CONTROLLER UNIT AS SPECIFIED IN CHAPTERS 9 & 10 OF TEES 11/19/99 DOCUMENT AND CURRENT ERRATA.

- THE ATC UNIT IS MODULAR, INTER-CHANGEABLE MODULES, MULTI-APPLICATION.
- IT WAS DEVELOPED TO JOIN THE 170
 CONTROLLER FAMILY. IT INTERFACES WITH
 NEMA TS 1&2 AND 170 CABINET FAMILIES. IN
 ADDITION, IT IS A MATED PAIR TO THE NEW ITS
 CABINET FAMILY
- THERE HAS BEEN OVER 26 APPLICATIONS IDENTIFIED FOR THE ATC.

5 VERSIONS

- 2070 V (VME) UNIT 170 & TS 2 CABINET
- 2070 L (LITE) UNIT 170 & TS 2 CABINET
- 2070 LC (LITE) UNIT ITS CABINET
- 2070 VN (VME & NEMA) TS 1 CABINET
- 2070 LN UNIT (LITE & NEMA) TS 1 CABINET

2070 V UNIT

- 2070 CHASSIS
- CENTRAL PROCESSING UNIT 1A DUAL BOARD MODULE WITH VME MASTER / SLAVE CAPABILITY
- FIELD I/O MODULE 2A OR 2B
- FRONT PANEL 3A
- POWER SUPPLY 4A
- VME CAGE ASSEMBLY 5

2070 LITE UNIT

- CHASSIS
- CENTRAL PROCESSING UNIT 1B SINGLE BOARD WITH ETHERNET & SERIAL PORT 8
- FIELD I/O MODULE 2A OR 2B
- FRONT PANEL 3B
- POWER SUPPLY 4A OR 4B

2070 LC UNIT

- CHASSIS
- CENTRAL PROCESSING UNIT 1B
- FIELD I/O MODULE 2B OR NONE *
- FRONT PANEL 3B OR 3C
- POWER SUPPLY 4A OR 4B

OTHER MODULES

- BEE BOX
- CENTRAL PROCESSING UNIT 1C (FUTURE API)
- 6A TWO MODEMS AND/OR 1200 BPS EIA
 232 SERIAL PORT
- 6B TWO MODEMS AND/OR UP TO 9600 BPS EIA
 232 SERIAL PORT
- 6D FIBER OPTIC COMM
- 7A TWO COMM CHANNELS EIA/TIA 232
- 7B TWO COMM CHANNELS EIA/TIA 485
- 8 NEMA MODULE FOR TS 1 INTERFACE

COST

2070 V (VME) UNIT = \$2,800 - \$3,200

2070 L (LITE) UNIT = \$2,000 - \$2,200

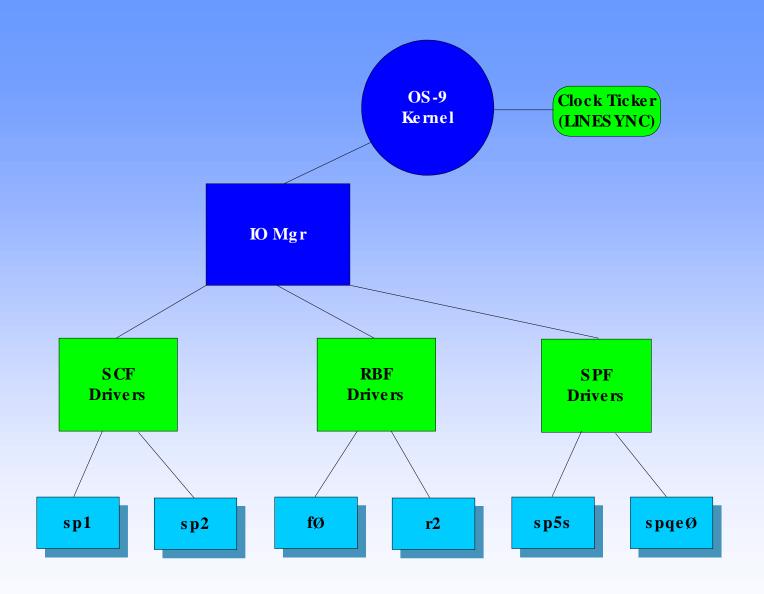
2070 LC (LITE/COMM) UNIT = \$1,300 - \$1,600

2070-8 (NEMA) MODULE = \$600 - \$800

SESSION 1.2

2070 OPERATING SYSTEM

CRAIG GARDNER


OPERATING SYSTEM

- OS-9 RTOS by Microware
- Device driver API layer
 - Allows applications portability to any 2070
 - Simplifies access to controller features
 - Support for ATC API with compatible library

OS-9 RTOS

- . REAL-TIME KERNEL
- . UNIFIED I/O
- . MULTI-TASKING
- . UNIX-LIKE API
- . HAWK DEVELOPMENT IN C, C++

DEVICE DRIVERS

Storage: Non-volatile & volatile Ramdisks

Comms: Synchronous & Asynchronous serial

Clock/Timers: Calendar / DST; hardware timers;

clock synchronization

• Peripheral Devices: LCD display; activity LED; field I/O;

power fail handling

Network: Ethernet

EXAMPLE "C" CODE SAMPLE

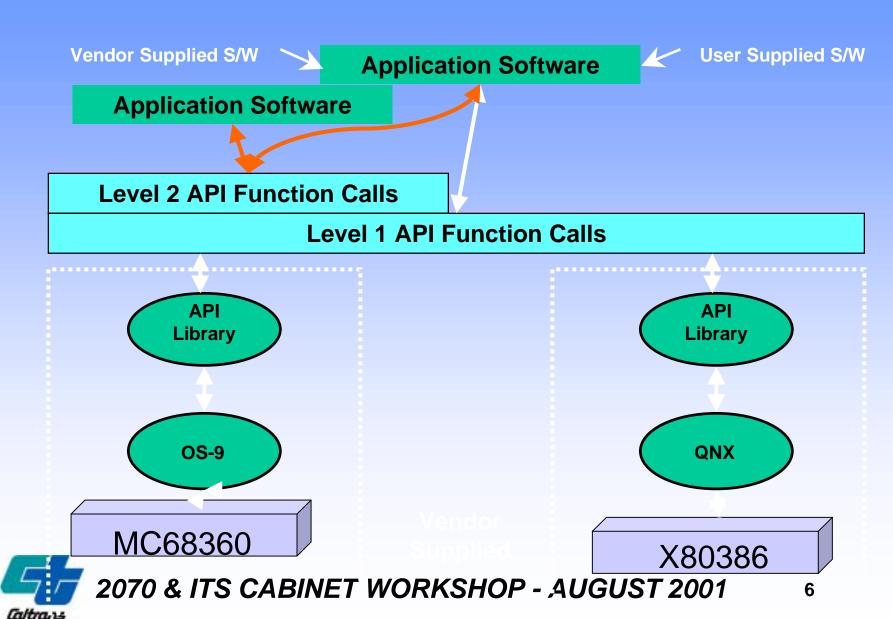
Open the LED device named "/led"

```
_os_open("/led", S_IREAD/S_IWRITE, &led_path);
```

Turn on LED device

```
char led_state = 1;  /* state = ON */
u_int32 count = 1;  /* send one byte to driver */
_os_write(led_path, &led_state, &count);
```

❖ Turn off LED device


```
led_state = 0;
count = 1;
_os_write(led_path, &led_state, &count);
```

Close LED device

```
_os_close(led_path);
```


Application Programming Interface

SESSION 1.3

CENTRAL PROCESSOR UNITS (CPU) AND VME SYSTEM

DAVE MILLER

CENTRAL PROCESSOR UNITS (CPU)

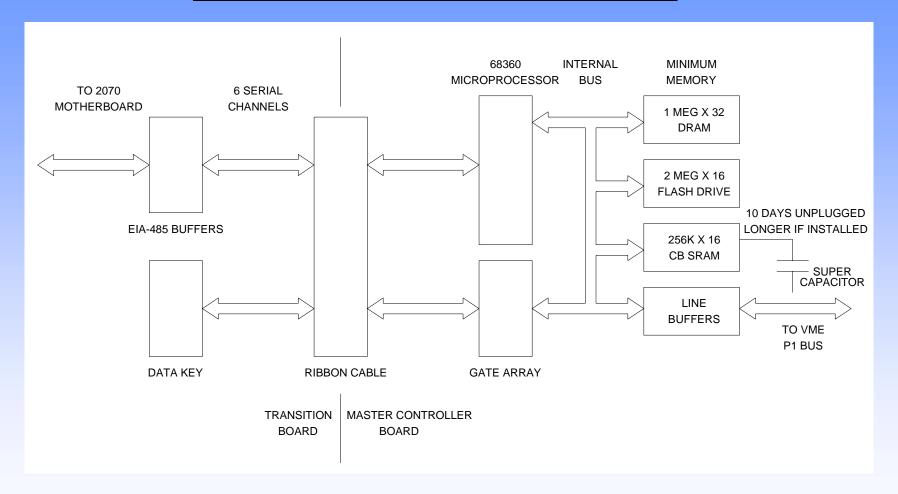
- CPU is the "BRAINS" of the 2070 ATC
- Includes microprocessor, memory and mass storage
- Currently, two CPU versions, 2070-1A and 2070-1B
- 2070-1A: Two board version with parallel expansion
- 2070-1B: One board version with serial expansion
- Planned, 2070-1C: Processor and OS independent

2070-1A & 2070-1B COMMON FEATURES

- Memory Types and Capacities
 - 4 Megabyte minimum FLASH drive
 - 512 Kbytes minimum capacitor-backed SRAM
 - 4 Megabytes minimum DRAM
- 68360 Microprocessor, 24.576 MHz
- Time of day (TOD) clock, including day, date
- Super capacitor backup for TOD and SRAM, 10 days min when removed from controller, 30 days min when installed
- OS-9 operating system with 2070 extensions
- Data_Key holder and removable data_key

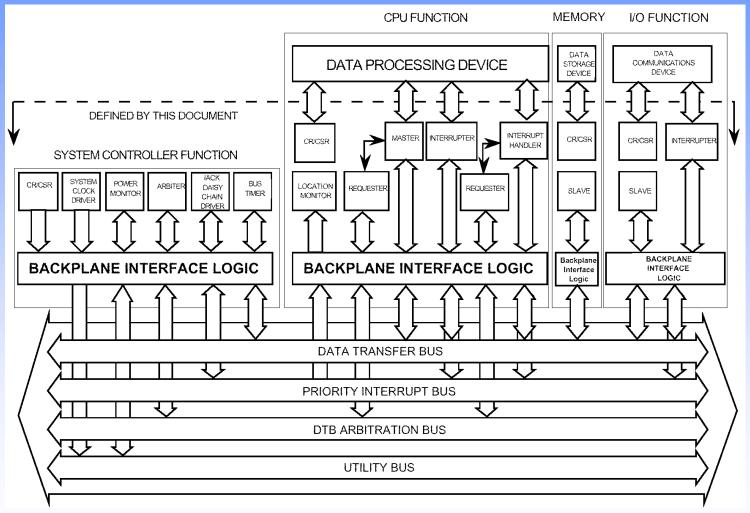
2070-1A TWO BOARD CPU

2070-1A CPU


VME MCB

TRANSITION BOARD

2070-1A CPU BLOCK DIAGRAM

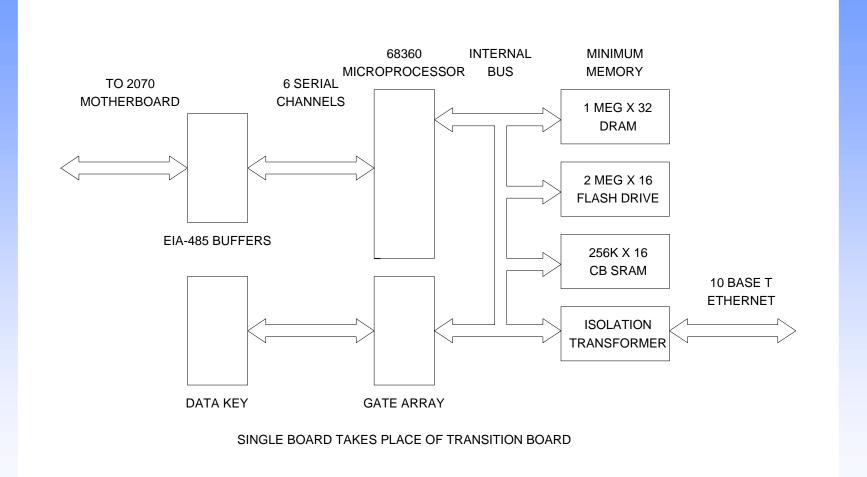


2070-1A CPU VME EXPANSION

- Expansion via parallel Versa Module Europe (VME) bus
- VME is a worldwide standard for hardened computers
- Used in military, petrochemical and robotic applications
- P1 8/16/32/64-bit multi-processor, bus request/grant
- 3U half-height with 96 pin DIN connector
- 2070-1A MCB occupies one slot, 4 spare expansion slots
- Hundreds of standard VME modules from multiple vendors (see www.vita.com for listing of vendors and products)

2070-1A VME P1 BUS (96 PINS)

VME INTEGRATION


- VME modules require special software drivers
- Similar to installing new hardware in personal computer
- User is responsible for installation of software driver
- Be aware that some VME modules do not have OS-9 drivers

2070-1B SINGLE BOARD CPU

2070-1B CPU BLOCK DIAGRAM

2070-1B CPU ETHERNET EXPANSION

- Expansion via serial 10 Base-T Ethernet
- 10 Mega bits per second communications rate
- Built-in RJ-45 connector on 2070-1B face plate
- Built-in Internet Protocol (IP) address for each CPU
- Hundreds of add-on devices from multiple vendors
- Commonly used with fiber splitter / Ethernet hub in cabinet

TRADITIONAL TYPE 170 CPU OPERATION

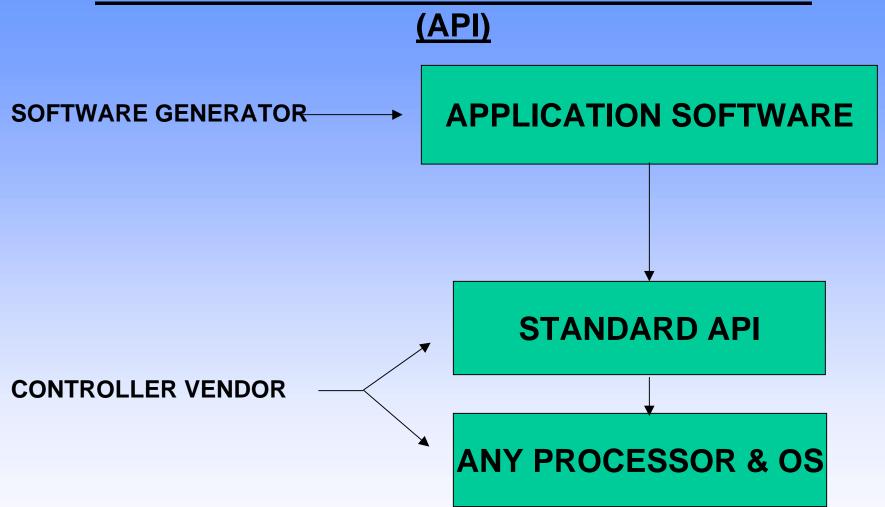
- Controller handles single application (traffic, ramp etc)
- Application object code located in PROM memory device
- Application executes directly from PROM memory device
- Software updated by reprogramming PROM memory device
- Software is developed for specific microprocessor, must be rewritten when hardware becomes obsolete

2070 ATC CPU OPERATION

- Operates as a general purpose computer
- Patterned after the IBM PC architectural model, except hardened for unattended operation in harsh environment
- Like a PC, multiple applications stored in FLASH drive
- Application software launched from drive, similar to .BAT
- Like a PC, software is loaded from drive to DRAM
- Application in DRAM accesses drive for data storage
- Like a PC, software is compatible with new hardware & OS

FREEWAY MANAGEMENT EXAMPLE

- Freeway management code is stored in FLASH drive
- 2070 ATC boots and loads freeway mgmt code into DRAM
- 2070 ATC continually computes volumes and occupancy
- In case of power fail, calculations are stored in CB SRAM
- Every 15 min, results are stored to file in FLASH drive
- File can be uploaded to central and pasted into WORD doc
- Other applications may reside in FLASH drive, ie RAMP



FUTURE 2070-1C CPU

- Next generation CPU for 2070 ATC, new CALTRANS & NEMA/AASHTO/ITE development specification
- Hardware and operating system independent
- Upon completion of Application Program Interface (API)
 OS-9 not required, uses any operating system
- Upon completion of API, 68360 not required, uses any processor meeting performance specification
- Performance specification for multiple application
- Compatible with all software developed for 2070

2070-1C APPLICATION PROGRAM INTERFACE (API)

SESSION 1.4

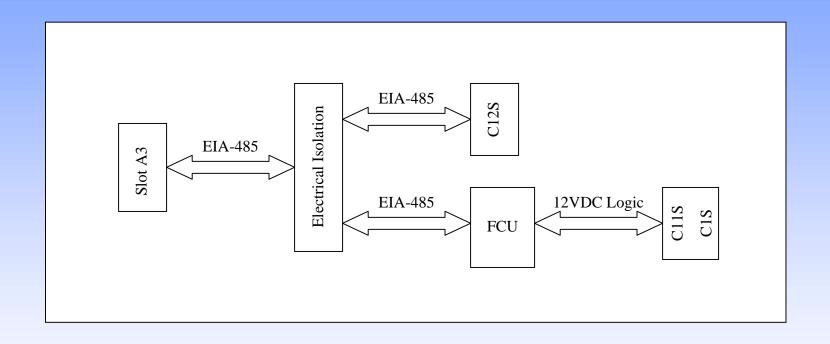
MODEL 2070 - 2A & 2B FIELD I/O MODULES

CLYDE NEEL

<u>PURPOSE</u>

2070-2A

2070-2B

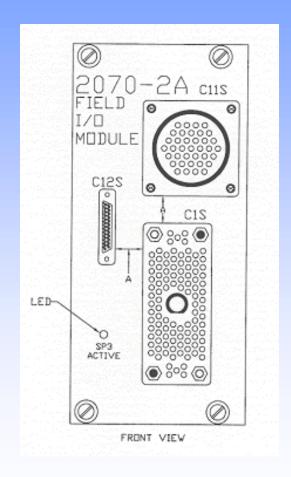

- 170 COMPATIBLE I/O TO INTERFACE HOST CABINET
- I/O PROCESSING AUGMENTS MAIN CPU

- INTERFACE ITS
 CABINET SERIAL
 BUSES 1 AND 2
- CONNECT 2070-8
 NEMA INTERFACE
 UNIT

2070-2A FEATURE SUMMARY

- PARALLEL I/O 64 INPUTS, 64 OUTPUTS
- MODULE CONTROL UNIT FIELD I/O FUNCTIONS
- SYNCHRONOUS SERIAL INTERFACES TO CPU SP5

2070-2A BLOCK DIAGRAM

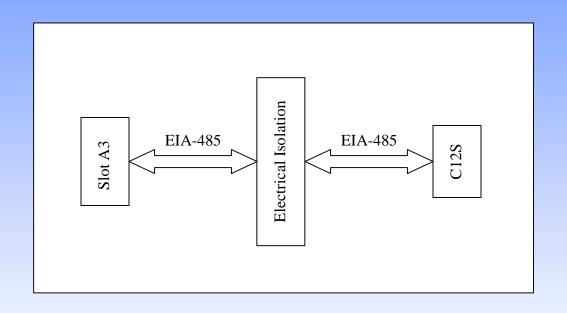

2070-2A FRONT PANEL FEATURES

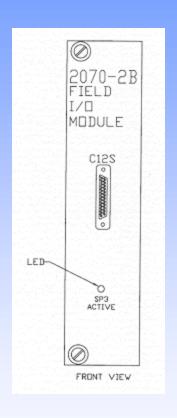
C1S / C11S

- 170 COMPATIBLE
- 64 INPUTS
- 64 OUTPUTS
- ISOLATED 12VDC

C12S

- SERIAL SP5 AND SP3
- LINESYNC, AC FAIL, AND RESET
- ISOLATED EIA485


2070-2A PROCESSING


- FIELD CONTROL UNIT
 - EMBEDDED PROCESSOR
 - DIAGNOSTICS
- INPUTS
 - 1MS RESOLUTION
 - CONFIGURE FILTERING
 - BUFFERED TRANSITION MONITORING

2070-2A PROCESSING

- OUTPUTS
 - TRACKING INPUTS
 - SINGLE AND CONTINUOUS PULSE
 - GATED AND TRIGGERED

2070-2B DIAGRAM AND PANEL

SESSION 1.5

FRONT PANELS AND "B" BOX ASSEMBLY

RALPH BOAZ

THREE MODELS FOR THE 2070 FRONT PANEL

- 2070-3A USES 1/2 INCH CHARACTER 4X40 LCD
 DISPLAY AND KEYPADS
- 2070-3B USES 1/4 INCH CHARACTER 8X40 LCD
- 2070-3C NOT DISPLAY OR KEYPADS

- LCD FOR THE 2070-3A & 2070-3B MODELS
 - 4X40 OR 8X40 ELECTRO-LUMINESCENT (EL)
 BACKLIT DISPLAY
 - ILLUMINATES WHEN A KEY IS PRESSED
 - CONTRAST CONTROL
 - 5X8 DOT MATRIX CHARACTERS INCLUDING
 UNDERLINE

- KEYPADS FOR THE 2070-3A & 2070-3B MODELS
 - 4X4 KEYPAD FOR ALPHANUMERIC ENTRY
 - 4X3 KEYPAD FOR CURSOR CONTROL AND SYMBOL ENTRY

- OTHER FEATURES
 - CPU ACTIVE LED
 - BELL

- OTHER FEATURES (CONT.)
 - AUXILIARY SWITCH
 - C50S CONNECTOR FOR SOFTWARE INSTALLATION AND MANAGEMENT
 - VT-100 STANDARD INTERFACE
 - INTERCHANGEABLE

- 2070-3C MODEL
 - BLANK PANEL
 - ADDS C60P CONNECTOR FOR LAPTOP, PDA, OR A "B-BOX"
 - VT-100 STANDARD TERMINAL
 - COST EFFECTIVE

2070-3A

2070-3B AND "B" BOX ASSEMBLY

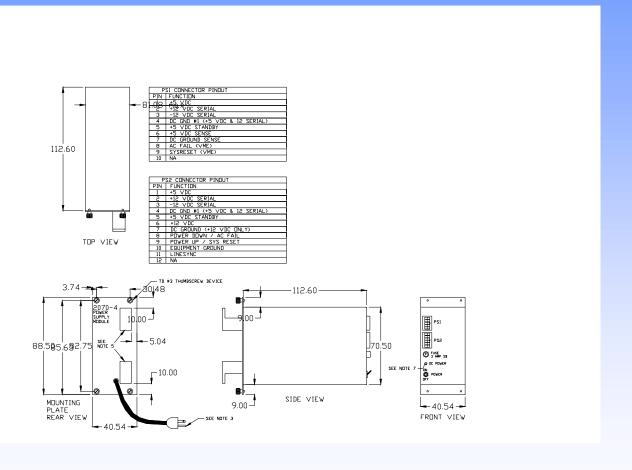
• 2070-3C

SESSION 1.6

MODEL 2070-4 POWER SUPPLY UNITS AND INTERNAL INTERFACE

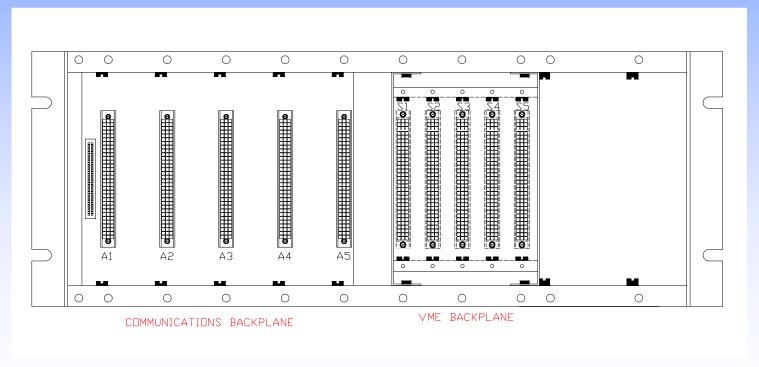
- 2070-4 POWER SUPPLY UNITS CONSIST OF TWO MODELS 4A AND 4B
- INTERNAL INTERFACE CONSIST OF SERIAL BACKPLANE MOTHERBOARD

RON JOHNSON



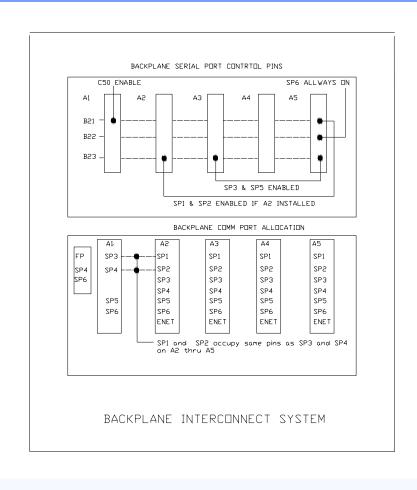
2070-4 UNIT POWER SUPPLIES 4A AND 4B

- 4A HAS A 10 A +5VDC POWER SUPPLY USED WHEN THE VME CAGE ASSEMBLY IS PRESENT.
- 4B HAS AN 3.5A +5VDC POWER SUPPLY USED ON THE 2070 LITE CONTROLLER UNIT (NON VME).
- BOTH HAVE ADDITIONAL VOLTAGE OUTPUTS, +/-12 VDC COMM AT 0.5A AND +12VDC AT 1A, ISOLATION VOLTAGE FOR I/O 2B MODULE.
- +5VDC STANDBY POWER TO HOLD UP AT 600µA FOR A MINIMUM OF 600 MINUTES.
- POWER CONTROL CIRCUITRY TO PROVIDE SYSTEM POWER DOWN-POWER UP OPERATION.
- 60 HZ LINESYNC
- HOLDOVER FOR 0.5 SECOND FOR 30 WATTS TO KEEP THE SYSTEM OPERATING DURING SHORT OUTAGES.


4A AND 4B POWER SUPPLIES CONTINUED

INTERNAL INTERFACE

- THE COMMUNICATIONS BACKPLANE CONSISTS OF 5 CONNECTORS.
- A1 REPLACES SERIAL PORTS 1 AND 2 WITH 3 AND 4
- A2 A5 SUPPORT ALL SERIAL PORTS INCLUDING ENET



SERIAL CONTROL AND INTERFACE

- THE SERIAL MOTHERBOARD CONSISTS OF 5 "DIN 96 PIN" CONNECTORS
 ARRANGED AS A1 A5 AND A 40 PIN HEADER LABELED FP
 CONNECTOR.
- A2 A5 ARE PARALLEL WIRED TO SUPPORT THE 6 SERIAL PORTS AND CONTROL SIGNALS AND ETHERNET NETWORK.
- A1 IS UNIQUE. IT SUPPORTS SERIAL PORTS 3 AND 4 AT THE SAME PIN LOCATIONS IN LIEU OF SERIAL PORTS 1 AND 2.
- THE OBJECTIVE IS TO OPERATE MODEM MODULE IN EITHER SLOTS WITHOUT SPECIAL PIN SELECTION.

BACKPLANE INTERCONNECT SYSTEM

SESSION 1.7

2070 COMMUNICATIONS MODULES

FLOYD WORKMON

- THE 2070 INTERNAL BUS PROVIDES 6 SERIAL
 EIA 485 PORTS PLUS / "ETHERNET" NETWORK
- CONNECTIONS A1 A4 AVAILABLE FOR COMM MODULES
- AS NOTED, PORTS 5 AND 6 TYPICAL ASSIGNED TO UNIT FUNCTIONS
- PORTS 3 & 4 ARE MULTI-USED
- PORTS 1 & 2 (PLUS ETHERNET) AVAILABLE
 FOR CONTROL AND INT/EXT COMMUNICATION.

4 COMM MODULES SPECIFIED IN CURRENT TEES DOCUMENT

- MODEL 2070-6A
- MODEL 2070-6B
- MODEL 2070-7A
- MODEL 2070-7B

FIBER OPTIC COMM MODULE AVAILABLE

MODEL 2070-6D

- 6A TWO CHANNEL ASYNC MODEM MODULE (LIKE 170 MODEL 800) HALF/FULL DUPLEX 1200 BPS INTERFACES WITH TELEPHONE VOICE GRADE AND DIRECT LINE
- 6B TWO CHANNEL ASYNC MODEM HALF/FULL DUPLEX UP TO 9600 BPS INTERFACES WITH CONDITIONED TELEPHONE AND DIRECT LINE.
- 7A TWO CHANNEL ASYNC / SERIAL COMM MODULE INTERFACE EXTERNAL EIA/TIA 232
- 7B TWO CHANNEL ASYNC / SYNC COMM MODULE INTERFACE EXTERNAL EIA/TIA 485

OTHER MODULES EITHER EXISTING OR PENDING

2070-6C 1 CHANNEL AUTO DIAL

1 CHANNEL 400 MODEM

2070-6D 2 CHANNEL FIBER OPTIC

SESSION 1.8

CALTRANS ATC DAT V 1.0

HARRISON LAM

CALTRANS ATC DAT V 1.0

• **DEFINITIONS**:

ATC -

ADVANCE TRANSPORTATION CONTROLLER UNIT

DAT -

DIAGNOSTIC ACCEPTANCE TESTS

V 1.0

VERSION 1

CALTRANS ATC DAT V 1.0

- ATC DAT V 1.0 IS COMPOSED OF
 THE EAGLE VALIDATION PROGRAM
 AND L.A. DOT TEST PROGRAMS WITH
 CERTAIN EDITS
- IT IS TARGETED FOR SEPT. 2001 RELEASE

TESTS:

- TIME-OF-DAY CLOCK & TIMING FUNCTIONS
- SERIAL COMMUNICATIONS
- FIELD I/O (INPUT/OUTPUT)
- SRAM / DRAM MEMORIES
- FLASH MEMORY
- FRONT PANEL ASSEMBLY TEST PROGRAM
- FIELD INPUT / OUTPUT TEST PROGRAM
- INTERNAL TIMERS
- SYSTEM INTERRUPTS & LOGIC FUNCTIONS

LOAD, START

- USE ANY COMMUNICATION PROGRAM THAT COMES WITH THE KERMIT PROTOCOL WE USE MS WINDOWS HYPERTERMINAL
 - * CONNECT THE 2070 TO THE PC BETWEEN C50S PORT OF THE 2070 WITH COM PORT OF THE LOADING PC

DEFAULT PORT RATE 9600 BPS
LOAD ATC DAT V 1.0 PROGRAM FILES
POWER ON/OFF
PROGRAM AUTOMATICALLY STARTS

SESSION 1.9

CALTRANS 2070 TESTING FOR QPL ACCEPTANCE

DAVID WELLS

2070 TESTING

- PHYSICAL INSPECTION
- SOFTWARE INSPECTION
- DIAGNOSTIC ACCEPTANCE TESTS
- POWER SUPPLY TESTS
- ENVIRONMENTAL TESTS
- ETHERNET

PHYSICAL INSPECTION

- ENSURE ALL DELIVERABLES ARE WITH CONTROLLER
- PHYSICAL DIMENSIONS ARE CORRECT
- COMPONENTS ARE PROPERLY LABELED
- PARTS ARE NO OLDER THAN 3 YEARS

SOFTWARE INSPECTION

- ENSURE ALL SOFTWARE MODULES ARE PRESENT
- DAYLIGHT SAVINGS
- OS-9 VERSION
- MEMORY
- BOOT UP TIME
- TEST ASYNCHRONOUS COMMUNICATION ON EIA-232 AND 485 PORTS

DIAGNOSTIC ACCEPTANCE TESTS

- SERIAL PORT LOOPBACK
- FIELD IO LOOPBACK
- MEMORY (FLASH/DRAM/RAM)
- REAL TIME CLOCK

POWER SUPPLY TESTS

- POWER SUPPLY VOLTAGES AND LOAD TESTING
- ACFAIL AND SYSRESET TIMING SIGNALS
- EFFICIENCY
- LINESYNC
- SHORT OUT

ENVIRONMENTAL TESTS

- LOAD AND RUN CALTRANS TRAFFIC CONTROL SIGNAL PROGRAM
- TEMPERATURE TESTING +74 C AND -37 C
- 2 KVA TEST
- FRONT PANEL KEYBOARD TEST

ETHERNET - 2070 LITE ONLY

- TELNET TO CONTROLLER USING ETHERNET
- ADDITIONAL ETHERNET MODULES ARE PRESENT

